Skip to main content
Log in

Mechanical characterization of electrospun boron nitride nanotube-reinforced polymer nanocomposite microfibers

  • Invited Paper
  • FOCUS ISSUE: Boron Nitride Nanotubes
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Boron nitride nanotubes (BNNTs) are promising fillers for reinforcing polymers toward lightweight and high-strength nanocomposite materials. Understanding the interfacial load transfer mechanism is of importance to take advantage of the extraordinary structural and mechanical properties of BNNTs. Here, we investigate the mechanical properties of electrospun BNNT-reinforced polymethyl methacrylate (PMMA) nanocomposite microfibers. The local load transfer on the BNNT–PMMA interface inside the nanocomposite microfiber is characterized based on in situ Raman micromechanical measurements. The effective interfacial shear strengths of 0.1%, 0.5%, and 0.65% BNNT-PMMA microfibers are found to be about 78.4 MPa, 60.9 MPa, and 50.7 MPa, respectively, which correspond to the increases of Young’s modulus (tensile strength) of about 67% (25%), 108% (60%), and 133% (69%) from pure PMMA microfibers. The study reveals the constitutive role of the nanotube–polymer interfacial strength in the composite’s mechanical property enhancement. The findings contribute to a better understanding of the process–structure–property relationship and the reinforcing mechanism of nanotube-based nanocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Data availability

The reported materials and data are available upon request.

Code availability

Not applicable.

References

  1. J. Baur, E. Silverman, Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull. 32, 328–334 (2011)

    Article  Google Scholar 

  2. A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron-nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994)

    Article  CAS  Google Scholar 

  3. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron-nitride nanotubes. Science 269, 966–967 (1995)

    Article  CAS  Google Scholar 

  4. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)

    Article  CAS  Google Scholar 

  5. N.G. Chopra, A. Zettl, Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297–300 (1998)

    Article  CAS  Google Scholar 

  6. R. Arenal, M.-S. Wang, Z. Xu, A. Loiseau, D. Golberg, Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes. Nanotechnology 22, 265704 (2011)

    Article  Google Scholar 

  7. E. Hernandez, C. Goze, P. Bernier, A. Rubio, Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502–4505 (1998)

    Article  CAS  Google Scholar 

  8. H.M. Ghassemi, C.H. Lee, Y.K. Yap, R.S. Yassar, Real-time fracture detection of individual boron nitride nanotubes in severe cyclic deformation processes. J. Appl. Phys. 108, 024314 (2010)

    Article  Google Scholar 

  9. D.-M. Tang, C.-L. Ren, X. Wei, M.-S. Wang, C. Liu, Y. Bando, D. Golberg, Mechanical properties of bamboo-like boron nitride nanotubes by in situ TEM and MD simulations: strengthening effect of interlocked joint interfaces. ACS Nano 5, 7362–7368 (2011)

    Article  CAS  Google Scholar 

  10. A.P. Suryavanshi, M.-F. Yu, J. Wen, C. Tang, Y. Bando, Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527–2529 (2004)

    Article  CAS  Google Scholar 

  11. D. Golberg, P.M.F.J. Costa, O. Lourie, M. Mitome, X. Bai, K. Kurashima, C. Zhi, C. Tang, Y. Bando, Direct force measurements and kinking under elastic deformation of individual multiwalled boron nitride nanotubes. Nano Lett. 7, 2146–2151 (2007)

    Article  CAS  Google Scholar 

  12. Y. Zhao, X. Chen, C. Park, C.C. Fay, S. Stupkiewicz, C. Ke, Mechanical deformations of boron nitride nanotubes in crossed junctions. J. Appl. Phys. 115, 164305 (2014)

    Article  Google Scholar 

  13. M. Zheng, X. Chen, C. Park, C.C. Fay, N.M. Pugno, C. Ke, Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy. Nanotechnology 24, 505719 (2013)

    Article  Google Scholar 

  14. X. Chen, L. Zhang, C. Park, C.C. Fay, X. Wang, C. Ke, Mechanical strength of boron nitride nanotube-polymer interfaces. Appl. Phys. Lett. 107, 253105 (2015)

    Article  Google Scholar 

  15. Z. Xu, D. Golberg, Y. Bando, Electrical field-assisted thermal decomposition of boron nitride nanotube: experiments and first principle calculations. Chem. Phys. Lett. 480, 110–112 (2009)

    Article  CAS  Google Scholar 

  16. X. Chen, C.M. Dmuchowski, C. Park, C.C. Fay, C. Ke, Quantitative characterization of structural and mechanical properties of boron nitride nanotubes in high temperature environments. Sci. Rep. 7, 1–9 (2017)

    Google Scholar 

  17. Y. Xiao, X.H. Yan, J.X. Cao, J.W. Ding, Y.L. Mao, J. Xiang, Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys. Rev. B 69, 205415 (2004)

    Article  Google Scholar 

  18. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes. EPL 28, 335 (1994)

    Article  CAS  Google Scholar 

  19. S.A. Thibeault, J.H. Kang, G. Sauti, C. Park, C.C. Fay, G.C. King, Nanomaterials for radiation shielding. MRS Bull. 40, 836–841 (2015)

    Article  CAS  Google Scholar 

  20. W. Wang, Z. Li, E. Prestat, T. Hashimoto, J. Guan, K.S. Kim, C.T. Kingston, B. Simard, R.J. Young, Reinforcement of polymer-based nanocomposites by thermally conductive and electrically insulating boron nitride nanotubes. ACS Appl. Nano Mater. 3, 364–374 (2020)

    Article  CAS  Google Scholar 

  21. J. Guan, B. Ashrafi, Y. Martinez-Rubi, M.B. Jakubinek, M. Rahmat, K.S. Kim, B. Simard, Epoxy resin nanocomposites with hydroxyl (OH) and amino (NH2) functionalized boron nitride nanotubes. Nanocomposites 4, 10–7 (2018)

    Article  CAS  Google Scholar 

  22. C. Zhi, Y. Bando, T. Terao, C. Tang, H. Kuwahara, D. Golberg, Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv. Funct. Mater. 19, 1857–1862 (2009)

    Article  CAS  Google Scholar 

  23. H. Chang, M. Lu, P.J. Arias-Monje, J. Luo, C. Park, S. Kumar, Determining the orientation and interfacial stress transfer of boron nitride nanotube composite fibers for reinforced polymeric materials. ACS Appl. Nano Mater. 2, 6670–6676 (2019)

    Article  CAS  Google Scholar 

  24. H. Chang, M. Lu, J. Luo, J.G. Park, R. Liang, C. Park, S. Kumar, Polyacrylonitrile/boron nitride nanotubes composite precursor and carbon fibers. Carbon 147, 419–426 (2019)

    Article  CAS  Google Scholar 

  25. M.T. Byrne, Y.K. Gun’ko, Recent advances in research on carbon nanotube-polymer composites. Adv. Mater. 22, 1672–88 (2010)

    Article  CAS  Google Scholar 

  26. O.Q. Alsmairat, F. Gou, C.M. Dmuchowski, P.R. Chiarot, C. Park, R.N. Miles, C. Ke, Quantifying the interfacial load transfer in electrospun carbon nanotube polymer nanocomposite microfibers by using in situ Raman micromechanical characterization techniques. J. Phys. D 53, 365302 (2020)

    Article  CAS  Google Scholar 

  27. R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, J.Y. Mevellec, S. Lefrant, A. Rubio, A. Loiseau, Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 6, 1812–1816 (2006)

    Article  CAS  Google Scholar 

  28. R.J. Nemanich, S.A. Solin, R.M. Martin, Light scattering study of boron nitride microcrystals. Phys. Rev. B 23, 6348–6356 (1981)

    Article  CAS  Google Scholar 

  29. H.H. Gommans, J.W. Alldredge, H. Tashiro, J. Park, J. Magnuson, A.G. Rinzler, Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy. J. Appl. Phys. 88, 2509–2514 (2000)

    Article  CAS  Google Scholar 

  30. K.R. Jiang, L.S. Penn, Improved analysis and experimental evaluation of the single filament pull-out test. Compos. Sci. Technol. 45, 89–103 (1992)

    Article  CAS  Google Scholar 

  31. J. Zeng, B. Saltysiak, W.S. Johnson, D.A. Schiraldi, S. Kumar, Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites. Compos. B 35, 173–8 (2004)

    Article  Google Scholar 

  32. M. Loos, Fundamentals of polymer matrix composites containing CNTs, in CNR Polymer Science and Technology. (William Andrew Publishing, Norwich, 2015), pp. 125–70

    Google Scholar 

  33. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, S. Zhu, Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A 271, 395–400 (1999)

    Article  Google Scholar 

  34. M.W. Smith, K.C. Jordan, C. Park, J.-W. Kim, P.T. Lillehei, R. Crooks, J.S. Harrison, Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology 20, 505604 (2009)

    Article  Google Scholar 

  35. V. Yamakov, C. Park, J.H. Kang, X. Chen, C. Ke, C. Fay, Piezoelectric and elastic properties of multiwall boron-nitride nanotubes and their fibers: a molecular dynamics study. Comput. Mater. Sci. 135, 29–42 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Foundation under Grant No. CMMI-2009134 and the United States Air Force Office of Scientific Research under Grant No. FA9550-15-1-0491. The Raman spectroscopy measurements were performed using a facility acquired through an NSF-MRI Award (CMMI-1429176).

Funding

This work was financially supported by the National Science Foundation under Grant No. CMMI-2009134 and the United States Air Force Office of Scientific Research under Grant No. FA9550-15-1-0491. The Raman spectroscopy measurements were performed using a facility acquired through an NSF-MRI Award (CMMI-1429176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Ke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anjum, N., Alsmairat, O.Q., Liu, Z. et al. Mechanical characterization of electrospun boron nitride nanotube-reinforced polymer nanocomposite microfibers. Journal of Materials Research 37, 4594–4604 (2022). https://doi.org/10.1557/s43578-022-00653-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00653-8

Keywords

Navigation