Skip to main content

Advertisement

Log in

Synthesis of boron nitride nanotubes in thermal plasma with continuous injection of boron under atmospheric pressure

  • Invited Paper
  • FOCUS ISSUE: Boron Nitride Nanotubes
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Highly crystalline and small-diameter boron nitride nanotubes (BNNTs) are synthesized using a triple DC thermal plasma jet with continuous injection of boron feedstock at atmospheric pressure. The reaction pathway to BN phase is analyzed with thermodynamic equilibrium analysis. It is founded that BN formation through a reaction between nitrogen ion and boron is more thermodynamically favorable than recombination of nitrogen ion with electron. Nitrogen ions formed in the strong electric field of the plasma torches actively react with the boron feedstock, resulted in the formation of BN phase. As a result, the high production rate for BNNTs approaching at 22 g/h is achieved. Input power and total gas flow rate about production rate are 3.4 MJ/g and 120 L/g, resulting in the energy cost superior to those reported to date. Consequently, these findings suggest the industrial-scale production of BNNTs through an atmospheric pressure DC thermal plasma reactor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science 269, 966 (1995). https://doi.org/10.1126/science.269.5226.966

    Article  CAS  Google Scholar 

  2. C.W. Chang, A.M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 97, 085901 (2006). https://doi.org/10.1103/PhysRevLett.97.085901

    Article  CAS  Google Scholar 

  3. Y. Xiao, X.H. Yan, J.X. Cao, J.W. Ding, Y.L. Mao, J. Xiang, Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys. Rev. B Condens. Matter 69, 205415 (2004). https://doi.org/10.1103/PhysRevB.69.205415

    Article  CAS  Google Scholar 

  4. Y. Chen, J. Zou, S.J. Campbell, G.L. Caer, Appl. Phys. Lett. 84, 2430 (2004). https://doi.org/10.1063/1.1667278

    Article  CAS  Google Scholar 

  5. E.J. Mele, P. Král, Phys. Rev. Lett. 88, 056803 (2002). https://doi.org/10.1103/PhysRevLett.88.056803

    Article  CAS  Google Scholar 

  6. N.G. Chopra, A. Zettl, Solid State Commun. 105, 297 (1998). https://doi.org/10.1016/S0038-1098(97)10125-9

    Article  CAS  Google Scholar 

  7. T.A. Hilder, D. Gordon, S.H. Chung, Small 5, 2183 (2009). https://doi.org/10.1002/smll.200900349

    Article  CAS  Google Scholar 

  8. X. Chen, P. Wu, M. Rousseas, D. Okawa, Z. Gartner, A. Zettl, C.R. Bertozzi, J. Am. Chem. Soc. 131, 890 (2009). https://doi.org/10.1021/ja807334b

    Article  CAS  Google Scholar 

  9. R. Arenal, X. Blase, A. Loiseau, Boron-nitride and boron-carbonitride nanotubes. Adv. Phys. 59, 101 (2010). https://doi.org/10.1080/00018730903562033

    Article  CAS  Google Scholar 

  10. V. Meunier, C. Roland, J. Bernholc, M.B. Nardelli, Appl. Phys. Lett. 81, 46 (2002). https://doi.org/10.1063/1.1491013

    Article  CAS  Google Scholar 

  11. J. Cumings, A. Zettl, Solid State Commun. 129, 661 (2004). https://doi.org/10.1016/j.ssc.2003.11.026

    Article  CAS  Google Scholar 

  12. J.S. Lauret, R. Arenal, F. Ducastelle, A. Loiseau, M. Cau, B. Attal-Tretout, E. Rosencher, L. Goux-Capes, Phys. Rev. Lett. 94, 037405 (2005). https://doi.org/10.1103/PhysRevLett.94.037405

    Article  CAS  Google Scholar 

  13. R. Arenal, O. Stéphan, M. Kociak, D. Taverna, A. Loiseau, C. Colliex, Phys. Rev. Lett. 95, 127601 (2005). https://doi.org/10.1103/PhysRevLett.95.127601

    Article  CAS  Google Scholar 

  14. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004). https://doi.org/10.1038/nmat1134

    Article  CAS  Google Scholar 

  15. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990). https://doi.org/10.1038/347354a0

    Article  Google Scholar 

  16. A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Phys. Rev. Lett. 76, 4737 (1996). https://doi.org/10.1103/PhysRevLett.76.4737

    Article  CAS  Google Scholar 

  17. M. Terrones, W.K. Hsu, H. Terrones, J.P. Zhang, S. Ramos, J.P. Hare, R. Castlllo, K. Prassldes, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 259, 568 (1996). https://doi.org/10.1016/0009-2614(96)00773-7

    Article  CAS  Google Scholar 

  18. M.V.P. Altoe, J.P. Sprunck, J.-C.P. Gabriel, K. Bradley, J. Mater. Sci. 38, 4805 (2003). https://doi.org/10.1023/B:JMSC.0000004399.94881.57

    Article  CAS  Google Scholar 

  19. Y.W. Yeh, Y. Raitses, B.E. Koel, N. Yao, Sci. Rep. 7, 3075 (2017). https://doi.org/10.1038/s41598-017-03438-w

    Article  CAS  Google Scholar 

  20. Y. Shimizu, Y. Moriyoshi, S. Komatsu, T. Ikegami, T. Ishigaki, T. Sato, Y. Bando, Thin Solid Films 316, 178 (1998). https://doi.org/10.1016/S0040-6090(98)00411-8

    Article  CAS  Google Scholar 

  21. Y. Shimizu, Y. Moriyoshi, H. Tanaka, S. Komatsu, Appl. Phys. Lett. 75, 929 (1999). https://doi.org/10.1063/1.124557

    Article  CAS  Google Scholar 

  22. C.M. Lee, S.I. Choi, S.S. Choi, S.H. Hong, Curr. Appl. Phys. 6, 166 (2006). https://doi.org/10.1016/j.cap.2005.07.032

    Article  Google Scholar 

  23. K.S. Kim, C.T. Kingston, A. Hrdina, M.B. Jakubinek, J. Guan, M. Plunkett, B. Simard, ACS Nano 8, 6211 (2014). https://doi.org/10.1021/nn501661p

    Article  CAS  Google Scholar 

  24. K.S. Kim, M. Couillard, H. Shin, M. Plunkett, D. Ruth, C.T. Kingston, B. Simard, ACS Nano 12, 884 (2018). https://doi.org/10.1021/acsnano.7b08708

    Article  CAS  Google Scholar 

  25. A. Fathalizadeh, T. Pham, W. Mickelson, A. Zettl, Nano Lett. 14, 4881 (2014). https://doi.org/10.1021/nl5022915

    Article  CAS  Google Scholar 

  26. M. Kim, Y.H. Lee, J.H. Oh, S.H. Hong, B. Il Min, T.H. Kim, S. Choi, Chem. Eng. J. 395, 125148 (2020). https://doi.org/10.1016/j.cej.2020.125148

    Article  CAS  Google Scholar 

  27. T.H. Kim, Y.H. Lee, M. Kim, J.H. Oh, S. Choi, IEEE Trans. Plasma Sci. 47, 3366 (2019). https://doi.org/10.1109/TPS.2019.2920524

    Article  CAS  Google Scholar 

  28. M. Kim, J.-H. Oh, T.-H. Kim, Y.H. Lee, S.-H. Hong, S. Choi, J. Nanosci. Nanotechnol. 19(10), 6264 (2019). https://doi.org/10.1166/jnn.2019.17026

    Article  CAS  Google Scholar 

  29. J.-H. Oh, M. Kim, Y.H. Lee, S.-H. Hong, T.-H. Kim, S. Choi, J. Nanosci. Nanotechnol. 19(10), 6277 (2019). https://doi.org/10.1166/jnn.2019.17029

    Article  CAS  Google Scholar 

  30. T.H. Kim, J.H. Oh, M. Kim, S.H. Hong, S. Choi, Appl. Sci. Converg. Technol. 29, 117 (2020). https://doi.org/10.5757/ASCT.2020.29.5.117

    Article  Google Scholar 

  31. J.H. Oh, M. Kim, Y.H. Lee, S.H. Hong, S.S. Park, T.H. Kim, S. Choi, Ceram. Int. 46, 28792 (2020). https://doi.org/10.1016/j.ceramint.2020.08.042

    Article  CAS  Google Scholar 

  32. J.H. Oh, M. Kim, S.H. Hong, Y.H. Lee, T.H. Kim, S. Choi, Adv. Powder Technol. 33, 103400 (2022). https://doi.org/10.1016/j.apt.2021.103400

    Article  CAS  Google Scholar 

  33. H. Chen, Y. Chen, J. Yu, J.S. Williams, Chem. Phys. Lett. 425, 315 (2006). https://doi.org/10.1016/j.cplett.2006.05.058

    Article  CAS  Google Scholar 

  34. C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, D. Golberg, J. Phys. Chem. B 110, 1525 (2006). https://doi.org/10.1021/jp054941f

    Article  CAS  Google Scholar 

  35. M. Adnan, D.M. Marincel, O. Kleinerman, S.H. Chu, C. Park, S.J.A. Hocker, C. Fay, S. Arepalli, Y. Talmon, M. Pasquali, Nano Lett. 18, 1615 (2018). https://doi.org/10.1021/acs.nanolett.7b04335

    Article  CAS  Google Scholar 

  36. S. Agarwal, B. Hoex, M.C.M. van de Sanden, D. Maroudas, E.S. Aydil, Appl. Phys. 83, 4918 (2003). https://doi.org/10.1063/1.1630843

    Article  CAS  Google Scholar 

  37. J.P. Trelles, J.V.R. Heberlein, E. Pfender, J. Phys. D 40, 5937–5952 (2007). https://doi.org/10.1088/0022-3727/40/19/024

    Article  CAS  Google Scholar 

  38. W.Z. Wang, M.Z. Rong, J.D. Yan, A.B. Murphy, J.W. Spencer, Phys. Plasmas 18, 113502 (2011). https://doi.org/10.1063/1.3657426

    Article  CAS  Google Scholar 

  39. J.H. Oh, Y.H. Lee, T.H. Kim, S. Choi, Int. J. Plasma Environ. Sci. Technol. 15, e01002 (2021). https://doi.org/10.34343/ijpest.2021.15.e01002

    Article  Google Scholar 

  40. J.G. Li, M. Ikeda, R. Ye, Y. Moriyoshi, T. Ishigaki, J. Phys. D 40, 2348 (2007). https://doi.org/10.1088/0022-3727/40/8/S14

    Article  CAS  Google Scholar 

  41. T.H. Kim, S. Choi, D.W. Park, J. Korean Phys. Soc. 63, 1864 (2013). https://doi.org/10.3938/jkps.63.1864

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of the Republic of Korea (2018M3A7B4070992 and 2021M3I3A1084958). Minseok Kim was supported by the Graduate Fellowship funded by the Hyundai Motor Chung Mong-Koo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sooseok Choi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Oh, JH., Hong, SH. et al. Synthesis of boron nitride nanotubes in thermal plasma with continuous injection of boron under atmospheric pressure. Journal of Materials Research 37, 4419–4427 (2022). https://doi.org/10.1557/s43578-022-00670-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00670-7

Keywords

Navigation