Skip to main content
Log in

Electron microscopy study of BNNTs synthesized by high temperature–pressure method and purified by high-temperature steam

  • Invited Paper
  • FOCUS ISSUE: Boron Nitride Nanotubes
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Boron nitride nanotubes (BNNTs) possess extraordinary properties on the molecular level; hence, it is of particular interest to use them for the assembly of macroscopic materials. However, difficulties in BNNT synthesis and purification hinder their processing into such objects. Only recently, a large-scale production of high-quality BNNTs has been explored. Here, we study by advanced electron microscopy techniques BNNTs synthesized by the high temperature–pressure (HTP) method and compare BNNTs after different purification processes. We document many different defects and demonstrate that these do not prevent nematic alignment of BNNTs at high concentrations. In fact, we show that small-ordered domains form at lower concentrations for BNNTs of higher purity. Cryogenic electron microscopy provides direct-imaging evidence of the BNNT liquid crystalline phase, indicating the potential for the fabrication of highly ordered BNNT-based macroscopic assemblies by liquid-phase processing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. I. Sumio, Helical microtubules of graphitic carbon. Nature 353, 412–414 (1991). https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  2. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron nitride nanotubes. Science 269, 966–967 (1995). https://doi.org/10.1126/science.269.5226.966

    Article  CAS  Google Scholar 

  3. G. Ciofani, V. Mattoli, Boron Nitride Nanotubes in Nanomedicine, 1st edn. (Elsevier, Oxford, 2016)

    Google Scholar 

  4. A.W. Thornton, A. Ahmed, M. Mainak, H.B. Park, A.J. Hill, Functionalization and applications of boron nitride and other nanomaterials, in Nanotubes and Nanosheets. (CRC Press, Boca Raton, 2015), pp.271–304. https://doi.org/10.1201/b18073

    Chapter  Google Scholar 

  5. N.G. Chopra, A. Zettl, Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297–300 (1998). https://doi.org/10.1016/S0038-1098(97)10125-9

    Article  CAS  Google Scholar 

  6. A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081–5084 (1994). https://doi.org/10.1103/PhysRevB.49.5081

    Article  CAS  Google Scholar 

  7. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes. EPL 28, 335–340 (1994). https://doi.org/10.1209/0295-5075/28/5/007

    Article  CAS  Google Scholar 

  8. Y. Chen, J. Zou, S.J. Campbell, G. Le Caer, Boron nitride nanotubes: pronounced resistance to oxidation. Appl. Phys. Lett. 84, 2430–2432 (2004). https://doi.org/10.1063/1.1667278

    Article  CAS  Google Scholar 

  9. C. Zhi, Y. Bando, C. Tang, D. Golberg, Boron nitride nanotubes. Mater. Sci. Eng. R Rep. 70, 92–111 (2010). https://doi.org/10.1016/j.mser.2010.06.004

    Article  CAS  Google Scholar 

  10. D. Golberg, Y. Bando, Unique morphologies of boron nitride nanotubes. Appl. Phys. Lett. 79, 415–417 (2001). https://doi.org/10.1063/1.1385188

    Article  CAS  Google Scholar 

  11. M.W. Smith, K.C. Jordan, C. Park, J.W. Kim, P.T. Lillehei, R. Crooks, J.S. Harrison, Very long single-and few-walled boron nitride nanotubes via the pressurized vapor/condenser method. Nanotechnology (2009). https://doi.org/10.1088/0957-4484/20/50/505604

    Article  Google Scholar 

  12. A.L. Tiano, C. Park, J.W. Lee, H.H. Luong, L.J. Gibbons, S.-H. Chu, S. Applin, P. Gnoffo, S. Lowther, H.J. Kim, P.M. Danehy, J.A. Inman, S.B. Jones, J.H. Kang, G. Sauti, S.A. Thibeault, V. Yamakov, K.E. Wise, J. Su, C.C. Fay, Boron nitride nanotube: synthesis and applications, Proc. SPIE 9060, Nanosensors, Biosensors, Info-Tech Sensors Syst. 906006 (2014). https://doi.org/10.1117/12.2045396

  13. K. Keun Su, K. Myung Jong, P. Cheol, C.F. Catharine, C. Sang-Hyon, T.K. Christopher, S. Benoit, Scalable manufacturing of boron nitride nanotubes and their assemblies: a review. Semicond. Sci. Technol. 32, 13003 (2017)

    Article  Google Scholar 

  14. K.S. Kim, C.T. Kingston, A. Hrdina, M.B. Jakubinek, J. Guan, M. Plunkett, B. Simard, Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies. ACS Nano 8, 6211–6220 (2014). https://doi.org/10.1021/nn501661p

    Article  CAS  Google Scholar 

  15. O. Kleinerman, M. Adnan, D.M. Marincel, A.W.K. Ma, E.A. Bengio, C. Park, S.H. Chu, M. Pasquali, Y. Talmon, Dissolution and characterization of boron nitride nanotubes in superacid. Langmuir 33, 14340–14346 (2017). https://doi.org/10.1021/acs.langmuir.7b03461

    Article  CAS  Google Scholar 

  16. D.M. Marincel, M. Adnan, J. Ma, E.A. Bengio, M.A. Trafford, O. Kleinerman, D.V. Kosynkin, S.H. Chu, C. Park, S.J.A. Hocker, C.C. Fay, S. Arepalli, A.A. Martí, Y. Talmon, M. Pasquali, Scalable purification of boron nitride nanotubes via wet thermal etching. Chem. Mater. 31, 1520–1527 (2019). https://doi.org/10.1021/acs.chemmater.8b03785

    Article  CAS  Google Scholar 

  17. M. Adnan, D.M. Marincel, O. Kleinerman, S.H. Chu, C. Park, S.J.A. Hocker, C. Fay, S. Arepalli, Y. Talmon, M. Pasquali, Extraction of boron nitride nanotubes and fabrication of macroscopic articles using chlorosulfonic acid. Nano Lett. 18, 1615–1619 (2018). https://doi.org/10.1021/acs.nanolett.7b04335

    Article  CAS  Google Scholar 

  18. C.J.S. Ginestra, C. Martínez-jiménez, A. Matayaho Ya’akobi, O.S. Dewey, A.D. Smith McWilliams, R.J. Headrick, J.A. Acapulco, L.R. Scammell, M.W. Smith, D.V. Kosynkin, D.M. Marincel, C. Park, S.-H. Chu, Y. Talmon, A. Marti, M. Pasquali, Liquid crystals of neat boron nitride nanotubes and their assembly into ordered macroscopic materials. Nat. Commun. 13, 3136 (2022). https://doi.org/10.1038/s41467-022-30378-5

    Article  CAS  Google Scholar 

  19. H. Cho, S. Walker, M. Plunkett, D. Ruth, R. Iannitto, Y. Martinez Rubi, K.S. Kim, C.M. Homenick, A. Brinkmann, M. Couillard, S. Dénommée, J. Guan, M.B. Jakubinek, Z.J. Jakubek, C.T. Kingston, B. Simard, Scalable gas-phase purification of boron nitride nanotubes by selective chlorine etching. Chem. Mater. (2020). https://doi.org/10.1021/acs.chemmater.0c00144

    Article  Google Scholar 

  20. S.H. Lee, M. Kang, H. Lim, S.Y. Moon, M.J. Kim, S.G. Jang, H.J. Lee, H. Cho, S. Ahn, Purification of boron nitride nanotubes by functionalization and removal of poly(4-vinylpyridine). Appl. Surf. Sci. 555, 149722 (2021). https://doi.org/10.1016/j.apsusc.2021.149722

    Article  CAS  Google Scholar 

  21. V.R. Kode, M.E. Thompson, C. McDonald, J. Weicherding, T.D. Dobrila, P.S. Fodor, C.L. Wirth, G. Ao, Purification and assembly of DNA-stabilized boron nitride nanotubes into aligned films. ACS Appl. Nano Mater. 2, 2099–2105 (2019). https://doi.org/10.1021/acsanm.9b00088

    Article  CAS  Google Scholar 

  22. M.S. Amin, B. Atwater, R.D. Pike, K.E. Williamson, D.E. Kranbuehl, H.C. Schniepp, High-purity boron nitride nanotubes via high-yield hydrocarbon solvent processing. Chem. Mater. 31, 8351–8357 (2019). https://doi.org/10.1021/acs.chemmater.9b01713

    Article  CAS  Google Scholar 

  23. T. Oku, Synthesis, Atomic Structures and Properties of Boron Nitride Nanotubes (Intech Open, London, 2013)

    Book  Google Scholar 

  24. A. Klug, From virus structure to Chromatin: X-ray diffraction to three-dimensional electron microscopy. Annu. Rev. Biochem. 79, 1–35 (2010). https://doi.org/10.1146/annurev.biochem.79.091407.093947

    Article  CAS  Google Scholar 

  25. O. Kleinerman, A.N.G. Parra-Vasquez, M.J. Green, N. Behabtu, J. Schmidt, E. Kesselman, C.C. Young, Y. Cohen, M. Pasquali, Y. Talmon, Cryogenic-temperature electron microscopy direct imaging of carbon nanotubes and graphene solutions in superacids. J. Microsc. 259, 16–25 (2015). https://doi.org/10.1111/jmi.12243

    Article  CAS  Google Scholar 

  26. D.E. Tsentalovich, R.J. Headrick, F. Mirri, J. Hao, N. Behabtu, C.C. Young, M. Pasquali, Influence of carbon nanotube characteristics on macroscopic fiber properties. ACS Appl. Mater. Interfaces 9, 36189–36198 (2017). https://doi.org/10.1021/acsami.7b10968

    Article  CAS  Google Scholar 

  27. D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, T. Sato, Insights into the structure of BN nanotubes. Appl. Phys. Lett. 77, 1979–1981 (2000). https://doi.org/10.1063/1.1313251

    Article  CAS  Google Scholar 

  28. Z.L. Wang, C. Hui, Electron Microscopy of Nanotubes (Springer, New York, 2003)

    Book  Google Scholar 

  29. M.J. Green, C.C. Young, A.N.G. Parra-Vasquez, M. Majumder, V. Juloori, N. Behabtu, C.L. Pint, J. Schmidt, E. Kesselman, R.H. Hauge, Y. Cohen, Y. Talmon, M. Pasquali, Direct imaging of carbon nanotubes spontaneously filled with solvent. Chem. Commun. 47, 1228–1230 (2011). https://doi.org/10.1039/c0cc03915b

    Article  CAS  Google Scholar 

  30. J.R. Bellare, H.T. Davis, L.E. Scriven, Y. Talmon, Controlled environment vitrification system: an improved sample preparation technique. J. Electron Microsc. Tech. 10, 87–111 (1988). https://doi.org/10.1002/jemt.1060100111

    Article  CAS  Google Scholar 

  31. L. Liberman, O. Kleinerman, I. Davidovich, Y. Talmon, Micrograph contrast in low-voltage SEM and cryo-SEM. Ultramicroscopy 218, 113085 (2020). https://doi.org/10.1016/j.ultramic.2020.113085

    Article  CAS  Google Scholar 

  32. L. Issman, Y. Talmon, Cryo-SEM specimen preparation under controlled temperature and concentration conditions. J. Microsc. 246, 60–69 (2012). https://doi.org/10.1111/j.1365-2818.2011.03587.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our research was supported by Air Force Office of Scientific Research (AFOSR) Grants FA9550-18-1-0014 and FA9550-19-1-7045, and the United States−Israel Binational Science Foundation Grant 2016161. MP’s work was supported by The Robert A. Welch Foundation grant C-1668. Cryo-EM was performed at the Technion Center for Electron Microscopy of Soft Matter supported by the Technion Russell Berrie Nanotechnology Institute (RBNI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeshayahu Talmon.

Ethics declarations

Conflict of interest

Authors Scammell and Smith are employees of BNNT Materials LLC, and author Smith is a shareholder in BNNT Materials LLC. The remaining authors declare that they have no conflict of interest.

Additional information

Matteo Pasquali was a guest editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matatyaho Ya’akobi, A., Ginestra, C.J.S., Scammell, L.R. et al. Electron microscopy study of BNNTs synthesized by high temperature–pressure method and purified by high-temperature steam. Journal of Materials Research 37, 4508–4521 (2022). https://doi.org/10.1557/s43578-022-00697-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00697-w

Navigation